Package: iZID 0.0.1
iZID: Identify Zero-Inflated Distributions
Computes bootstrapped Monte Carlo estimate of p value of Kolmogorov-Smirnov (KS) test and likelihood ratio test for zero-inflated count data, based on the work of Aldirawi et al. (2019) <doi:10.1109/BHI.2019.8834661>. With the package, user can also find tools to simulate random deviates from zero inflated or hurdle models and obtain maximum likelihood estimate of unknown parameters in these models.
Authors:
iZID_0.0.1.tar.gz
iZID_0.0.1.zip(r-4.5)iZID_0.0.1.zip(r-4.4)iZID_0.0.1.zip(r-4.3)
iZID_0.0.1.tgz(r-4.4-any)iZID_0.0.1.tgz(r-4.3-any)
iZID_0.0.1.tar.gz(r-4.5-noble)iZID_0.0.1.tar.gz(r-4.4-noble)
iZID_0.0.1.tgz(r-4.4-emscripten)iZID_0.0.1.tgz(r-4.3-emscripten)
iZID.pdf |iZID.html✨
iZID/json (API)
NEWS
# Install 'iZID' in R: |
install.packages('iZID', repos = c('https://xiaomangmang.r-universe.dev', 'https://cloud.r-project.org')) |
- OTU - Bacterial OTUs.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:9cfc679b0a. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | OK | Nov 16 2024 |
R-4.5-linux | OK | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:bb.mlebb.zihmlebnb.mlebnb.zihmledis.kstestmodel.lrtnb.mlenb.zihmlepoisson.mlepoisson.zihmlesample.hsample.zi
Dependencies:codetoolsdoParallelextraDistrforeachiteratorsRcpprootSolve
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Maximum likelihood estimate for beta binomial distributions | bb.mle bnb.mle nb.mle poisson.mle |
Maximum likelihood estimate for zero-inflated or hurdle beta binomial distributions. | bb.zihmle bnb.zihmle nb.zihmle poisson.zihmle |
The Monte Carlo estimate for the p-value of a discrete KS Test | dis.kstest |
likelihood ratio test for two models | model.lrt |
Bacterial OTUs. | OTU |
Generate random deviates from zero-inflated or hurdle models | sample.h sample.zi |